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1. INTRODUCTION 

 

1.1 HUMAN MELANOMA 

 Cancer is a diverse group of diseases characterized by the 

uncontrolled growth and spread of malignant cell [1]. Self 

sufficiency of growth signals, insensitivity to antigrowth signals, 

evasion of apoptosis, limitless replicative potential, sustained 

angiogenesis and finally tissue invasion and metastasis are 

considered as the six characteristic changes that occur in 

carcinogenesis [2]. In addition to these characteristics, avoidance 

of immunosurveillance is considered to be the seventh hallmark 

of cancer [3]. Cancer is primarily the result of genetic or 

epigenetic changes in normal cells that give them a growth 

advantage. It is also generally recognized that a series of genetic 

changes are required in order for the development of cancer ; a 

single mutation is not sufficient for a normal cell to escape all of 

the regulatory processes that restrict it to a normal growth 

pattern [4]. Melanoma probably is the most aggressive cancer in 

humans, and remains one of the leading causes of cancer death 

in developed countries [5]. The main etiological risk factor for 

the development of melanoma is UV radiation, although 

hereditary reasons play a notable role in the progression of 

melanoma. Pigmentary traits, such as red hair, fair complexion, 

and a tendency to freckle have been show as the main risk factor  
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for the development of melanoma [6]. Clinically, melanoma is 

classified according to the thickness in millimeters, mitotic rate, 

presence of ulceration, penetration depth, location of existing 

metastases. Also, increasing age, male sex, and tumor location 

on the trunk, head, or neck also worsen prognosis [7]. The 

resistance of melanoma to therapy and its recurrence are related 

to the genetic heterogeneity and genomic instability of the 

tumor. For many years these genetic alterations were thought to 

be linked to the accumulation of random mutations in 

functionally differentiated cells which transform them into 

malignant cells that have lost their ability to differentiate and 

have develop drug resistance. Therefore, available treatments 

can induce objective tumor regression in a small percent of 

patient, but these responses are not always associated with 

improved long-term survival [8]. 

1.1.1 Development of melanoma from melanocyte to 

metastatic melanoma 

Melanoma is neoplasm of melanocytic origin having the most 

rapid increase in incidence in many countries comparable to 

other tumors [9]. The development of melanoma and its 

progression is described in six steps: benign or common nevi 

without dysplastic changes, melanocytic nevus with lentiginous 

melanocytic hyperplasia, dysplastic nevi, radial-growth phase 

(RGP), of primary melanoma, vertical –growth phase (VGP), of  
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melanoma and metastatic melanoma (fig. 1), [9-13]. Of not, RGP 

melanoma cells extent upward into the epidermis, but remain in 

situ and lack the capacity to invade the dermis and metastasize. 

VGP melanoma invades the dermis and deeper structures and is 

metastatically competent [14-16]. Once metastasis to lymph 

node occur, the 5-year survival ranges from 13% to 69%, 

depending on the number of lymph nodes affected tumor 

burden [17]. With visceral metastasis, the 5-year survival drops 

to approximately 6%, and the median survival from time of 

diagnosis is 7.5 months [18]. Infact, metastatic cells have a 

highly unstable phenotype and can rapidly adapt to selective 

pressure, allowing the cell to survive even under the most 

unfavorable circumstances. 
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 FIG. 1. The six steps of the development of melanoma and its 
progression. (1) Common acquired melanocytic nevus; (2) melanocytic nevus 
with lentiginous melanocytic hyperplasia; (3) melanocytic nevus with 
melanocytic dysplasia; (4) the radial growth phase of primary melanoma; (5) 
the vertical growth phase of primary melanoma; and (6) metastatic 
melanoma. The fact, that in 50% of all sporadic melanoma cases tumors arise 
without clinical precursor lesions, leads to the hypothesis that those lesions 
might derive directly from mature melanocytes (solid arrows) or melanocyte 
precursor cells(dashed arrows). Most melanomas arise within the epidermis 
(melanoma in situ) and then invade across the basement membrane region. 
There may in addition be rare melanomas that arise de novo—presumably 
from melanocyte precursor cells—in the dermis in a subset of nodular 
melanomas and other at least equally rare melanomas that arise in the dermis 
in association with a pre-existing congenital nevus(shown as dotted arrows 
from ‘‘Common Nevus/Melanocytic Hyperplasia/ Melanocytic Dysplasia’’ 
directly to ‘‘VGP Melanoma’’).[68,156] 

 

1.1.2 Genomic instability in melanoma 

 Genomic instability and substantially altered cancer 

genomes are hallmark features of malignant neoplasms 

including melanoma [19,20]. Specifically, melanomas manifest 

extensive chromosomal rearramgements, such as translocation, 

chromosomal amplification, or deletion [21,22]. While such 

cumulative genomic alterations may lead to diverse melanoma  
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populations with differential cytogenetic abnormalities, uniform 

genomic characteristics between primary tumors and metastases 

form the same patient would suggest a clone progression of 

melanoma [23].The strongest genetic risk for the development of 

melanoma results from heritable alterations in cyclin- 

dependent kinase inhibitor 2A(CDKN2A) gene, which encodes 

two separate but related proteins, p16/INK4a and p14/ARF. 

These proteins help regulate cell division and apoptosis, both of 

which are necessary to maintain cellular homeostasis 

[24].Germline CDKN2A mutations were identified in 25-50% of 

familial melanoma kindreds. In sporadic primary melanoma, 

only a few mutations (0-25%) and homozygous deletions(10%) 

are found in this gene [25].However, this locus was found to 

carry UVB signature transversion in the sporadic primary 

melanomas , suggesting that UVB radiation may play a role in 

the etiology of melanoma development [26,27]. The importance 

of this locus in melanoma susceptibility was confirmed by 

studies showing that the penetrance of CDKN2A mutations 

significantly correlated with residence in a geographical location 

with a high population incidence rate of melanoma [28-31],and 

that CDKN2A mutation carriers have increased total nevus 

number and total nevus density- known risk factors for 

melanoma [32]. Other important genes include CDK4/6 and 

retinoblastoma (RB1), which encode downstream proteins in the 

same pathway as p16/INK4a and p14/ARF [23]. Oncogenic  
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mutations in either NRAS or BRAF are commonly associated 

with melanoma [33-35], and these mutations are also reported in 

20-80% of melanocytic nevi [36-40]. Identification of individuals 

who may have a hereditary susceptibility for the development 

of melanoma is essential to provide on opportunity for primary 

prevention, and to target high risk groups for early diagnosis 

and treatment [41]. As the increase incidence of malignant 

melanoma with the completion of sequencing of the human 

genome, there have been increasing efforts to identify the 

"melanoma gene(s)". 

 

1.1.3 Epidemiology of melanoma 

 Malignant melanoma continues to pose a substantial 

clinical challenge, and its risk may correlate with distinct skin 

pigmentation phenotypes. The protective role of melanin 

pigment indicated by incidence decrease of melanoma in black 

populations being 10 times less that white populations [40-42].In 

addition, epidemiological factors, such as intermittent 

ultraviolet radiation exposure concomitant with sunburns, 

particularly during childhood, significantly promote the 

susceptibility to melanoma [43,44]. The direct role of UVR in 

induction of squamous cells carcinomas (SCCs) and basal cell 

carcinomas (BCCs), clearly demonstrate by epidemiological  
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studies [41,45]. However, the relationship between sun exposure 

and melanoma is less evident. For example, melanomas can 

develop on sun protected areas of skin and in internal organs 

(for example in esophagus , colon, cervix),and they can be 

correlated with some genetic factors indicating that their 

induction and progression sometimes is not related with UV 

[46].Responses against environmental stresses including 

ultraviolet (UV) radiation are diverse in human skin phenotypes 

among racial/ethnic groups. It is well documented that black 

skin (alternatively called "African-American" or "dark" skin) is 

dramatically more resistant to the damaging effects of UV, 

including photocarcinogenesis and photoageing, that is white 

skin (alternatively called "Caucasian" or "light/fair"skin) [47-50]. 

Furthermore, the incidence of both melanoma and non 

melanoma skin cancers increases exponentially with age [51,52], 

the rate of increase with age is independent of the magnitude of 

risk due to the environmental carcinogen [53], this finding 

implies that age itself plays a major part in vulnerability to 

photo carcinogenesis. Ageing also influences that response to 

injury. In particular, there is an age associated decrease in the 

capacity to repair DNA [54,55], and a consequent increase in the 

rate of DNA mutations [56]. 
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1.2 ULTRAVIOLET RADIATION 

1.2.1 Definition and Characterization of UV radiations 

 UVR is located in the electromagnetic spectrum between 

the ionizing x-rays and the non-ionizing visible light (fig. 2). It 

spans a wavelength of 100-400 nanometers (nm) being non-

ionizing and non-visible. Since biological effects of UVR vary 

greatly with wavelength, it has further been divided into the 

three subclasses: short wave ultraviolet (UVC; 200-280nm), mid-

wave ultraviolet B (280-320nm) and long-wave ultraviolet A 

(UVA; 320-400 nm) [57,58]. Ultraviolet (UV) radiation has a few 

beneficial health effects like vitamin D3 formation or application 

in combination with drugs in the therapy of skin diseases 

including psoriasis and vitiligo, but it also causes many acute 

and chronic detrimental cutaneous effects, which may result in 

development of skin malignancies [59]. Although, UVR 

represents only a fraction of the solar radiation, it is responsible 

for the majority of its carcinogenic activity, UV photons can 

affects the DNA integrity, cell and tissue homeostasis, and 

induce mutation or affect expression of aplethora of genes 

including oncogenes and tumor suppressor gene [57,60-63].The 

ozone layer efficiently absorbs UV radiation up to about 310 nm 

thus it consumes all UVC radiation and most of UVB (95%). 

However, UVA is not absorbed at all [64]. Due to substantial 

damage to the protective ozone layer an increased amount of  
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UVB radiation is reaching the ground [65]. Moreover, UVB is 

about 20- fold less abundant than UVA, its energy is more 

efficiently absorbed by cellular molecules and is able to induced 

damages within cells and tissues at significantly lower doses 

than UVA [57,66]. Specifically, ultraviolet radiation causes 

genetic change in the skin, impairs cutaneous immune function, 

and induces the formation of DNA-damaging reactive oxygen 

species affects keratinocytes and melanocytes [67,68]. 

 

 FIG. 2. Ultraviolet radiation is located in the electromagnetic 
spectrum between the ionizing x-ray and the non-ionizing visible light, 
spanning in the wavelength region of 100-400 nanometers. Ultraviolet 
radiation has been divided into the three subclasses: shortwave ultraviolet-C 
(UVC), mid-wave ultraviolet-B (UVB) and long-wave ultraviolet A (UVA) 
radiation [66]. 

 

1.2.2 UV damage and DNA repairs 

 The UV component of sunlight causes skin damage and 

increases the risk for skin cancers such as melanoma. It appears  
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that melanoma risk is typically associated with intermittent, 

intense sun exposure rather than cumulative sun exposure. The 

exact mechanism and wavelengths of UV light that are most 

critical remain controversial, but both UVA and UVB have been 

implicated [69,70]. To exert its biological effects, UV light 

energetic photons must be first transmitted through skin layers 

and absorbed by a cellular molecule (chromophore, 

photosensitizer). UV radiation induced damage via two 

different mechanism :(1) direct absorption of the incident light 

by the cellular components, resulting in excited state formation 

and subsequent chemical reaction, this kind of injury is typical 

for DNA bases (2). In direct, absorption include 

photosensitization mechanisms, where the light is absorbed by 

endogenous (or exogenous) sensitizers. The excited photo 

sensitizers can induce cellular damage by electron transfer and 

hydrogen abstraction processes to yield free radicals or energy 

transfer with O2 to yield the reactive excited state, single oxygen 

[71]. When UV-induced mutation affect critical genes encoding 

protein or enzymes contributing to DNA repair, cell cycle 

control or apoptosis, it is likely that cumulative or subsequent 

DNA alteration are not sufficiently eradicated. Disrupted 

function of such regulative proteins are strongly connected with 

early stages of skin carcinogenesis [72]. Thus, UV- fingerprint 

mutations can be abundantly detected in the well characterized 

and pathogenically important tumor suppressor gene p53 from  
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squamous and basal cell carcinoma of human skin [73,74]. More 

recent observations suggest that another DNA repair system the 

methyl-derived mammalian mismatch repair (MMR) may also 

be attributable to the multistep tumorigenesis of UV- associated 

skin cancer. Microsatellite instability (MSI), caused by 

replication errors of small repetitive DNA sequences can be 

detected in epithelial and melanotic skin tumors [75], and is 

characterized by length changes at those repetitive loci scattered 

throughout the genome [76,77]. Tumor cells that display MSI are 

typically defective in posttranscriptional MMR providing a 

direct link between insufficient mispairing DNA repair and 

genetic instability [78,79]. Concomitant replication errors in 

different tumor suppressor and growth regulatory genes are 

supposed to the genetic mechanism of tumorigenesis in those 

cells. Mutations in MMR genes are etiologically responsible for 

hereditary nonpolyposis colon cancer. Functional MMR 

alterations are furthermore associated with visceral 

malignancies and the occurrence of sebaceous skin tumor, 

keratoacanthomas and less frequently squamous cell 

carcinomas in the rare autosomal dominant. Muir- Torre 

syndrome . Underlying mutations were found in the hMSH2 

and hMLH1 gene [80-82]. The most important protein involved 

in early UV- induced carcinogenesis of SCC appears to be the 

tumor suppressor p53. p53 is an essential and well defined 

transcription factor regulation cell cycle control and apoptosis  
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[83]. UV specific p53 mutations can be found in 75-80% of AK 

and in more than 90% of cutaneous squamous cell carcinoma 

[72,73,84]. These UV- fingerprint mutations of p53 mutations 

appear to correspond predominantly to UVB radiation, as UVA- 

induced carcinomas in hairless mice reveal p53 mutations only 

in 15% [85]. Recent data suggest that the MMR protein hMMR 

protein hMSH2 is a novel p53 regulated target gene indicating a 

direct involvement of p53 in DNA repair mechanisms [86]. 

Moreover, both p53 and MMR proteins reside in a large 

multisubunit complex of tumor suppressors, DNA damage 

sensors, and signal transducers named BASC for BRCA1-

associated genomic surveillance complex. 

 

1.3 MISMATCH REPAIR GENES 

 Mismatch repair genes present several functions relating 

to genetic stabilization, such as correcting errors in DNA 

synthesis, ensuring fidelity of genetic recombination or 

participating in the initial steps of apoptotic responses to 

different classes of DNA damage[87]. Since the discovery of the 

major human genes with DNA mismatch repair function, 

mutations in five of them have been correlated with 

susceptibility to Lynch syndrome: mutS homolog 2 (MSH2); 

mutL homolog 1 (MLH1); mutS homolog 6 (MSH6); postmeiotic  
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segregation increased 2 (PMS2); and postmeiotic segregation 

increased 1(PMS1) [88]. Germline abnormalities in MLH1 and 

MSH2 genes are found in more than 90% of HNPCC mutation 

carriers [90], 50% relating to hMLH1, 40% to hMSH2 and 10% 

distributed among the others [89]. The DNA mismatch repair 

(MMR) system play a critical role in maintaining genomic 

integrity in both prokaryotes and eukaryotes[92].Together with 

base-base mismatch, which are caused by errors of DNA 

polymerases that escape their proofreading function, IDLs 

(insertion/deletion loops) are addressed by the mismatch repair 

(MMR) system, which degrades the error- containing section of 

newly synthesized strand and therefore provides the DNA 

polymerase with another chance to generate an error- free copy 

of the template sequence. In the absence of MMR, IDLs , and 

base-base mismatches remain uncorrected, which results in a 

mutator phenotype that is accompanied by MSI and eventually, 

in cancer [93]. The MMR machinery has to satisfy two criteria: 

first, it must efficiently recognize bases- base mismatches and 

IDLs, second, it must direct the repair machinery to the newly 

synthesized DNA strand, which carries the erroneous genetic 

information. How these tasks are fulfilled was first elucidated in 

E.coli, where studies of the mutator strains mutS, mutL, mutH 

and uvrD culminated in the reconstitution of this prototypic 

MMR system from individual purified components [94]. The 

situation in eukaryotes is more complex than in E.coli. Of the  
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five MutS homologues (MSH) that have been identified in 

human cells, hMSH2, hMSH3 and hMSH6 participate in MMR 

in the form of heterodimers [95]. The most abundant mismatch 

binding factor is composed of hMSH2 and hMSH6. This factor, 

which is often to as MutSα , initiates the repair of base-base 

mismatches and IDLs of one or two extra helical nucleotides [96-

98],whereas the repair of larger IDLs is initiated by MutSβ , 

which is a heterodimer of hMSH2 and hMSH3. However, 

hMSH4-hMSH5 operates only in meiosis1 and has no role in 

MMR [91]. The MutL proteins are ATPases of the GHKL 

(gyrase/Hsp90/histidine-kinase/MutL) family [99],with the 

ATPase situated in the N-terminal domain and the dimerization 

domain at the C-terminus. The complex that is composed of 

hMLH1 and hPMS2-Mutlα- has the most important role in the 

MMR, as cells that lack either protein exhipt mutator 

phenotypes and MSI that is comparable to cells that are mutated 

in hMSH2 [93,100]. MutLβ ,which is composed of hMLH1 and 

hPMS1, could conceivably fulfill this function. Although this 

heterodimer could not be shown to participate in MMR in vitro. 

Similarly, MutLγ, which is composed of hMLH1 and hMLH3, 

and which has hitherto been believed to predominantly 

involved in meiotic recombination, might also have a backup 

role in mammalian MMR [101,102,90]. 
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1.4 TUMOR SUPPRESSOR GENES 

 Tumor suppressor genes are normal genes that slow 

down cell division, repair mistakes, and tell cells when to die. 

When tumor suppressor genes don’t work property, cells can 

grow out of control, which can lead to cancer. Damage to tumor 

suppressor genes contributes to a large number of different 

types of tumors. Mutation in tumor suppressor genes can arise 

spontaneously by exposure to a mutagenic substance such as 

ultraviolet or certain chemicals. In such cases, only the mutated 

cell and its descendants will be affected, Mutations can also be 

inherited from a parent or arise early in development, In these 

case, almost all the cells of the body will inherit the same 

mutation. A mutation in a single tumor suppressor gene is 

usually not enough to cause cancer. This is because each cell 

contains two copies of each gene, one inherited from each 

parent. Most cancer causing mutations cause a loss of function 

in the mutated gene. Often, having even one functional copy is 

enough to prevent disease, and two mutations are needed for 

cancer to develop. This is known as the "two-hit" model of 

carcinogenesis. There are a growing number of genes that have 

been identified as having some function as function as tumor 

suppressor gene (es.P53,BRCA1,BRCA2,APC and RB1)[103,104]. 

In fact, tumor suppressor genes participate in a variety of critical 

and highly conserved cell function, including regulation of the  
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cell cycle and apoptosis, differentiation, surveillance of genomic 

integrity and repair of DNA errors, signal transduction, and cell 

adhesion. Moreover, Tumor suppressor genes can be separated 

into 2 major categories: gatekeepers and caretakers. Gatekeepers 

directly inhibit tumor growth or promote tumor death. 

Inactivation of these genes contributes directly to cancer 

formation and progression, while inactivation of caretakers does 

not directly promote the growth of tumor. Rather, inactivation 

of caretakers leads to genetic instability that indirectly promotes 

growth by causing an increased mutation rate [104]. The 

increase in genetic instability greatly accelerates the 

development of cancer. Thus, mutation of caretaker genes lead 

to accelerated conversion of a normal cell to a neoplastic cell 

[105 ]. 

 

1.4.1 p53 gene 

 The p53 tumor suppressor belongs to a small family of 

related proteins that includes two other members p63 and 

p73[106]. Although structurally and functionally related, p63 

and 73 have clear role in normal development, whereas p53 

seems to have evolved in higher organisms to prevent tumor 

development. p53 is activated in response to several 

malignancy-associated stress signals, resulting in the inhibition  
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of tumor-cell growth [107,108]. Several responses can be 

provoked by p53, including cell-cycle arrest, senescence, 

differentiation and apoptosis, with the option chosen being 

dependent on many factors that are both intrinsic and extrinsic 

to the cell. P53 also contributes to the repair of genotoxic 

damage, potentially allowing for the release of the rehabilitated 

cell back into the proliferating pool [109]. However, p53 

function in cancers can be lost various mechanisms, including 

lesions that prevent activation of p53,mutations within the TP53 

gene (which encodes p53) itself or mutations of downstream 

mediators of p53 function. Analysis of many tumors has shown 

that TP53 is mutated in about half of all cancer, resulting in loss 

of apoptotic function. From the data available, it would seem 

that only 5% of TP53 mutation are found in the regulatory 

domains (amino terminus, amino acid 1-99; carboxyl terminus, 

amino acid 301-393). Whereas 95% of the mutation occur in the 

central region of TP53, which is responsible for sequence-

specific DNA binding (amino acid 100-300) (Fig. 3) [110,111]. 
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 FIG.3. p53 structure and location of tumor-associated mutation. p53 
is a transcription factor that contains several well-defined domains core and 
a carboxyl-terminal region that contains oligomerization sequences and 
nuclear-localization signal. Nuclear export of p53 regulated by signals in the 
amino and carboxyl termini. Interaction of proteins such as MDM2 or 
p300/CBP with the amino terminus of p53 can lead to modification such as 
acetylation or ubiquitylation in the carboxyl terminus. 

 

 Mutations of the p53 gene have been reported in more 

than 50% of all cancer types [112,113], and in approximately 

20% of melanoma cell line [114,115], and 5% of metastatic 

melanoma [116]. Also less than 1% of primary melanoma [117]. 

Also there are multiple of evidence support that: (1) p53 is the 

most commonly mutated gene in human cancer, (2) individual 

who inherit a p53 mutation are highly tumor prone , usually 

developing malignancy during childhood or a young adult 

[118]. This suggests that p53 mutation may not be the major 

underlying cause in the development of melanoma, but instead 

have a role in the progression and invasiveness of this cancer  
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type [119]. p53 is a transcription factor that directly activates the 

expression of genes that contain p53-binding sites within their 

regulatory regions [120-123]. However, the principal role of p53 

is in the induction of the apoptotic cascade. In addition to 

inducing genes that drive apoptosis,p53 can also activate the 

expression of genes that inhibit survival signaling,(Fig.4), and 

can repress gene expression and act independently of the 

regulation of transcription-functions that have also been 

implicated in the induction of the full apoptotic response. 

 

  FIG. 4. Several apoptotic pathways are activated by p53. p53 can 
induced the expression of numerous apoptotic gene that contribute to the 
activation of both death-receptor and mitochondrial apoptotic pathways. P53 
can also affect the efficiency of survival signaling 

 

 Detailed studies of tumor–derived p53 mutants showed 

that the tumor-suppression function of p53 is best correlated 

with its ability to induce apoptosis, and that the ability of p53 to  
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repress gene expression is tightly linked to this function [124-

127]. Although p53 can be a potent activator of cell death, 

induction of p53 dose not necessarily initiate a full apoptotic a 

full apoptotic response [109,128]. 

 

1.4.2 BRCA1 gene 

 The BRCA1 tumor suppressor gene encodes a 

phosphoprotein involved in many cellular key function 

including DNA repair, transcription regulation, cell-cycle 

control and apoptosis. Germline mutations in BRCA1 are 

present in nearly 50% of inherited breast cancer cases, and the 

acquisition of a single defective allele leads to an elevated 

predisposition to both breast and ovarian cancer [129,155,156]. 

Evidence suggests that BRCA1 may also be mutated in some 

sporadic breast cancer tumors [130].A common feature of cancer 

cells is a profound increase in genome instability. Accordingly, 

cells defective for BRCA1 exhibit elevated levels of chromosome 

aberrations, such as DNA breaks and chromatid exchanges, 

enhanced sensitivity to agents that damage DNA and defects in 

cell-cycle checkpoint function. Such changes are often associated 

with defects or loss of proteins involved in the detection and 

repair of DNA damage. It has therefore been proposed that 

BRCA1 functions in the DNA-damage response as a caretaker of  



Introduction 

 21 

 

the genome [131]. Since its discovery, many studies have 

addressed the function of BRCA1 with a view to understanding 

how it contributes to the maintenance of genome stability and 

how defects in this process result in cancer progression. These 

studies have led to a series of discoveries that implicate BRCA1 

in a multitude of different cellular processes. For example, there 

is now a large body of evidence supporting a direct role for 

BRCA1 in the repair of DNA damage by HR (homologous 

recombination). Not only is BRCA1 recruited to sites of DNA 

damage where it co-localizes with other proteins involved in the 

repair of DNA DSBs (double strand breaks) by HR, such as 

BRCA2 and Rad51 [132], but cells lacking functional BRCA1 are 

highly impaired for the homology-directed repair of defined 

DSBs, introduced into the genome by a restriction endonuclease 

[133]. BRCA1 has also been shown to be required for the 

activation of both S- and G2/M-phase cell-cycle arrest after 

DNA damage, the latter being dependent on prior 

phosphorylation of BRCA1 by the master checkpoint kinase 

ATM (ataxia telangiectasia mutated) [134]. Furthermore, BRCA1 

is thought to be involved in transcriptional regulation. BRCA1 

not only associates with RNA polymerase II [133], but also has 

been shown to activate the transcription of several genes. 

Finally, BRCA1 has been implicated in two types of gene 

silencing: the inactivation of the X chromosome, and meiotic sex 

chromosome inactivation [135,137]. 
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The BRCA1 gene is organized in 24 exons encoding a protein of 

1863 amino acids. Whereas conservation of the BRCA1 amino 

acid sequence varies among species, the N- and C-termini of the 

protein are highly conserved from nematode worms to humans 

[136]. These regions comprise two recognizable domains in 

BRCA1: a RING (really interesting new gene) finger domain at 

the N-terminus, and two C-terminal BRCT (BRCA1 C-terminal) 

domains (first identified in BRCA1, but subsequently found in a 

variety of DNA-repair proteins). Both domains mediate 

interactions with other proteins that may be important for 

BRCA1 function. In fact, BRCA1 associates with a myriad of 

different proteins , whose interactions are not limited to the 

RING and BRCT domains. These proteins include, (1) 

component of the basal transcription machinery, such as, RNA 

helicase A and RNA pol II [138,139], (2) generalized 

transcriptional coactivators, such as, p300, CBP, Brg1 [140,141], 

and corepressor, such as, RbA p46,RbAp48,histone 

deacetylases-1,2, and CtIP [142,143], (3) tumor suppressors, such 

as, p53, RB1, BRCA2 [144,145], (4) steroid hormone receptors 

estrogen receptor-α , and androgen receptor [146], (5) DNA 

repair proteins, such as, Rad50, Rad51, MSH2 and MLH1 [147-

149], (6) other sequence-specific transcription factors, such as, c-

Myc, Oct-1, and NF-YA [150,151], and (7) cell cycle regulatory 

proteins, such as BARD1, E2F1, cyclins [152,153]. These 

interactions are summarized in (Fig. 5). [154]. 
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 Fig. 5. BRCA1-interacting proteins. Structure of full-length human 
BRCA1 protein. Colored rectangles represent the previously characterized 
RING and BRCT domains, as well as two nuclear localization signals (NLS). 
BRCA1-binding partners are annotated below the domain in which the 
interaction is known to occur. Reported BRCA1-containing complexes are 
annotated at the bottom. BAP1, BRCA1-associated protein 1; BACH1/BRIP1, 
BRCA1-interacting protein-associated C-terminal helicase 1; BASC, BRCA1-
associated genome surveillance complex; BLM, Bloom’s syndrome protein; 
BRCC, BRCA1/BRCA2-containing complex; MLH, MutL homologue; MSH, 
MutS homologue; RBBP8, pRb-interacting protein 8; RFC, replication factor 
C; TOPBP1, topoisomerase II-binding Protein 1. 

 Although BRCA1 has been shown to be involved in a 

large variety of processes and make many different physical 

interactions, there is very little mechanistic detail addressing its 

molecular function. Since each of these domains may have 

distinct structural and biochemical characteristics, it conceivable 

that BRCA1 might perform different functions in each one of 

them[154]. However, the identification of several large 

complexes in which BRCA1 resides with many other DNA- 
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repair-associated proteins provides many avenues for future 

discovery. 
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2. Material and Methods 

 

 

2.1 Cell Culture 

 

Human melanoma cells, Colo38 and SK-MEL28, p53 

mutant, and SK-MEL93 were grown in RPMI-1640 medium 

(Invitrogen) supplemented with 10% fetal bovine serum and 1% 

streptomycin/penicillin (Sigma) at 37°C in a 5% CO2/95% air 

atmosphere. 

HEK293T (Human Embryonic Kidney cells) were grown 

in Dulbecco’s modified Eagle’s medium (DMEM) (Life 

Technologies) supplemented with 10% FBS and 1% 

streptomycin/penicillin. 

 

 

2.2 RNA Interference 

 

The siRNA duplexes were synthesized by Sigma. The 

sequence targeting BRCA1 gene was :5’-

ccggccctaagtttacttctctaaactcgagtttagagaagtaaacttagggttttt-3’. The 

non-silencing siRNA was purchased from Sigma and used as 

mock controls. The schematic representation of lentiviral vectors 

(pLK0.1/empty vector, pLK0.1/non-targetshRNA, 

pLK0.1/BRCA13’UTRshRNA and pLK0.1/Turbo GFP) utilized are 

represent in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, and show the   
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locations of major identifiable landmarks on DNA like 

restriction enzyme sites, gene of interest, plasmid name and 

length, etc. 

 

 

2.3 Preparation of lentiviral supernatants and transduction of 

SK-MEL93 cells 

 

 5 x 106 293T cells were grown on 10-cm plates to 70-80% 

confluence and co-transfected with 10 µg siRNA lentiviral DNA 

(pLK0.1/empty vector, pLK0.1/BRCA13’UTRshRNA) (Sigma-

Aldrich), 2 µg VSV-G plasmid DNA and 18 µg packaging viral 

CMV delta 8.9 plasmid, using the calcium phosphate 

precipitation method. After the addition of fresh culture 

medium 8 hr later, the cells were cultured for an additional 2 

days. The medium was harvested 48 hr post-transfection, and 

filtered through a 0.45 µm filter. The supernatants from 293T 

cultures were used to cross-transduce SK-MEL93 cells in the 

presence of 8 µg/ml polybrene (Sigma-Aldrich) and 

subsequently clones were selected by puromycin (1µg/ml) 

(Sigma-Aldrich) for an additional 2 days and treated with UV-B. 

The transduction efficiency was calculated by the green 

fluorescent protein (GFP) expression and was observed under a 

fluorescent microscope. The efficiency of RNA interference was 

monitored by Western blotting analysis. Fig. 10 summarizes  
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schematic representation of the preparation of lentiviral 

supernatants and transduction of SK-MEL93 cells. 

 

 

 

 

 

Fig. 10 

Fig. 6 Fig. 7 

Fig. 8 Fig. 9 
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2.4 UV-B irradiation 

 

Different human melanoma cell lines (Colo38, SK-MEL93, 

SK-MEL28, SK-Mel93/shBRCA1 and SK-Mel93/shplKO.1) were 

cultured for triplicate experiments. Media was removed from 70 

to 80% confluent cell cultures, cells were rinsed with phosphate-

buffered saline and exposed to UV-B (230V, 50Hz) using a 

Vilber Lourmat, FLX-35M at indicated doses. Medium was 

added immediately to continue culture until designated time 

points. Cells at 0hr were a non-irradiation control.  

 

2.5 Preparation of protein extracts 

 

For preparing whole-cell extracts, cells were washed in 

ice-cold PBS, harvested, and re-suspended in whole-cell extract 

buffer (50mM Tris-HCl; pH 8, 150mM NaCl, 1mM EDTA, 1mM 

DDT, 1mM PMSF, proteinase inhibitor Complete; Roche, 

Mannheim, Germany). After sonication on ice (two times for 10 

seconds) the homogenates were centrifuged (10.000 g, 10 min at 

4°C), and the clear supernatants were stored at -80°C. Protein 

concentrations were determined using the Bradford method 

(Bradford, 1976). Bradford reagent (200 µl; 0.01% G240 brilliant 

blue (Saba), 5% ethanol, 10% H3PO4, 85% dH2O) was added to 

10 µl of a 1: 10 dilution of the protein extracts. Following 15 min 

incubation in the dark, the absorption was measured by 

photometry at 595 nm. The protein concentration was  
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determined using a calibration curve with BSA protein, taken in 

parallel. 

 

2.6 Western blot analysis 

 

Samples of 40-80 µg of protein total extracts were 

separated on a 6 or 8% SDS-polyacrylamide gel. Separated 

protein were blotted onto a nitrocellulose transfer membrane 

(Sigma) in a Bio-Rad blot cell for 2 h at 50Volt using buffer 

consisting of 25mM Tris-HCl, 192mM glycine. The membranes 

were blocked for 1 h at room temperature in 5% (wt/vol) milk 

powder in TBS (150mM HCl, 20mM Tris pH 7.6) containing 

0.1% Tween 20 (TBS–Tween) and incubated overnight at 4°C 

with the primary antibody (1 : 200) in 5% (wt/vol) milk powder 

or BSA in TBS–Tween. The membranes were washed three 

times for 10 min in TBS–Tween each, incubated for 1 h with a 

horseradish-peroxidase coupled secondary antibody (dilution 

1:5000-1:10000) (Santa Cruz Biotechnology) in TBS–Tween and 

washed again three times for 10 min in TBS–Tween. For 

developing the membranes, a chemiluminescence detection 

system (Santa Cruz Biotechnology, Heidelberg, Germany) was 

used. The antibodies used were anti- BRCA1 (C-20), anti-p53 

(Bp-53-12), anti-MLH1 (H-300), anti-MSH2 (N-19) and γ-tubulin 

(Santa Cruz Biotechnology, Heidelberg, Germany).  
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2.7 RNA extraction and semiquantitative reverse transcription-

PCR. 

  

 Total RNA extraction for semiquantitative reverse 

transcription-PCR (RT-PCR) was done from three different 

human melanoma cell lines (Colo38, SK-MEL93 and SK-MEL28) 

at 80% to 90% confluence with TRIzol reagent (Life 

Technologies) according to the manufacturer’s protocol. A total 

of 5 µg DNase-treated RNA was reverse transcribed into first-

strand cDNA using the SuperScript First-Strand Synthesis 

System for RT-PCR (Invitrogen) with random hexanucleotide 

primers. cDNA (2 µL) was amplified for BRCA1, hMSH2, 

hMLH1 and p53 genes with the following primers:  

 

BRCA1: Forward 5’-ggcaacttattgcagtgtg-3’   

               Reverse  5’-tccccatcatgtgagtcatc-3’. 

hMSH2: Forward 5’-gccattttggagaaaggaca-3’  

               Reverse 5’-ctcacatggcacaaaacacc-3’.  

hMLH1: Forward 5’-gctgatgttaggacactacc -3’  

                Reverse 5’-aggaattggagcccaggagc -3’.  

p53:  Forward 5’-cggacgatattgaacaatg -3’  

         Reverse 5’- ggaactgttacacatgtag -3’. 
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A human glyceraldehyde 3-phosphate dehydrogenase cDNA 

fragment was amplified as the internal control for the amount of 

cDNA in the PCR with the following primers:  

 

GAPDH: Forward 5’-tgatgacatcaagaaggtggtgaag-3’  

Reverse 5’-tccttggaggccatgtgggccat-3’ 

 

 Following nested PCR amplification, the products were 

separated by agarose gel and stained by ethidium bromide. 

 

2.8 Flow cytometry 

 

 Cells, were collected by centrifugation at 200g for 10 min 

and fixed with 70% ethanol at + 4°C for 24h. The cell cycle was 

evaluated by flow cytometry using propidium iodide  (50 

g/ml) staining (Sigma), after prior incubation with 13 k-

units/ml RNase, (Sigma) (20 min incubation at 37°C) on a 

FACS-Calibur flow cytometer (Becton-Dickinson). A total of 

30000 events were evaluated using the ModFit LT 3.0 

Programme.  
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3. Results 

 

 

3.1 Effect of UVB-irradiation in three human melanoma cell 

lines: Colo 38, SK-MEL93 and SK-MEL28. 

  

 Recently, in vitro and in vivo laboratory investigations 

have shown that the DNA repair system modulates in 

melanoma cells UVB-induced DNA repair, cell cycle 

progression and apoptosis (159). To investigate the 

susceptibility of melanoma to UVB-irradiation, we used three 

human melanoma cell lines (Colo38, SK-MEL93 and SK-

MEL28).  

 We first, examined the expression of BRCA1, hMSH2, 

hMLH1 and p53 proteins by Western Blot analysis in Colo38, 

SK-MEL93 and SK-MEL28 cell lines. As shown in Fig. 11, we 

found equal amounts of BRCA1 and hMLH1 proteins in the 

three cell lines. Conversely, hMSH2 protein was over-expressed 

in Colo38 cell line, while p53 protein was over-expressed in 

Colo38 and SK-MEL28 cell lines. Moreover, BRCA1, hMSH2, 

hMLH1 and p53 over-expression was assessed by RT-PCR 

carried out on an aliquot of RNA done from Colo38, SK-MEL93 

and SK-MEL28 cell lines. As shown in Fig. 12, two independent 

assays confirmed the results obtained by Western Blot analysis. 

Glyceraldehyde 3-phosphate dehydrogenase cDNA was used as 

control of quantify and quality of RNA preparation. 
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 Fig.11. Western blot analysis of BRCA1, hMSH2, hMLH1 and p53 in 
different melanoma cell lines. γ-tubulin  immunoblot analysis was performed 
to ensure equal levels of protein loading. 

 

 

 Fig. 12. Reverse transcription-PCR was performed on total RNA 
from different melanoma cell lines. Following nested PCR amplification, the 
products were separated by agarose gel and stained by ethidium bromide. 
Amplification of GAPDH cDNA served as a control for quantity and quality 
of RNA preparations. 

 

 Next, we exposed Colo38, SK-MEL93 and SK-MEL28 cells 

to 10mJ/cm2 UV-B-irradiation and examined the expression of 

BRCA1, hMSH2, hMLH1 and p53 proteins by Western Blot 

analysis at different time (0,30-24 h). As shown in Fig 13, 14 and  
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15 we found equal amounts of hMLH1 protein in the three cell 

lines. Similar results, with equal amounts of BRCA1, hMSH2 

and p53 proteins, were observed with the cell lines Colo38 and 

SK-MEL28 (Fig. 13 and 14). Conversely, the expression of 

BRCA1, hMSH2 and p53 proteins, in the SK-MEL93 was found 

increased at 3h after UV-B-irradiation (Fig. 15). 

 

 

 Fig 13. Western Blot analysis of BRCA1, hMSH2, hMLH1 and p53 
protein levels in Colo38 cells after  treatment with UVB 10mJ/cm2, for the 
indicated time periods. γ-tubulin was used as control for loading. 
 

 

 

  
 
 
 
 
 
 
 
 
 
 
Fig 14. Western Blot analysis of BRCA1, hMSH2, hMLH1 and p53 protein 
levels in SK-Mel28 cells after  treatment with UVB 10mJ/cm2, for the 
indicated time periods. γ-tubulin was used as control for loading. 
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 Fig 15. Western Blot analysis of BRCA1, hMSH2, hMLH1 and p53 
protein levels in SK-Mel93 cells after  treatment with UVB 10mJ/cm2, for the 
indicated time periods. γ-tubulin was used as control for loading. 

 

 

3.2 Effect of UV-b-irradiation on cell cycle progression in 

Colo38, SK-MEL93 and SK-MEL28 cell lines. 

  

 To evaluate the effect of UV-B on the cell cycle of each 

cell lines (Colo38, SK-MEL93 and SK-MEL28), DNA content was 

serially observed after UV-B-irradiation (10mJ/cm2) by flow 

cytometry. As show in Fig. 16 Panel A, Colo38 cells seemed to 

be synchronized at the G1/S boundary phase until 12h after 

10mJ/cm2 UV-B-irradiation. From 12 to 24h a decrease in the 

fraction of S cells and a reciprocal increase of cells in Sub-G1 

phase was observed. Similar comportment was observed in the 

SK-MEL28 cell line (Fig. 16 Panel C) although did not seemed to 

be synchronized and the increase of cells in Sub-G1 phase was 

observed already to 9h after UVB irradiation. While, the SK-

MEL93 cell line did not seemed to be synchronized but a rapid  
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increase (about 35%) of cells in Sub-G1 phase was observed 

already 6h after UVB irradiation (Fig.16 Panel B).   

 

 

 

Fig. 16 Panel A. Cell cycle analysis of Colo38 cell line after exposure to UVB 
damage (10mJ/cm2). Data were analyzed with ModFit LT 3.0 software. 
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Fig. 16 Panel B Cell cycle analysis of SK-Mel93 cell line after exposure to 
UVB damage (10mJ/cm2). Data were analyzed with ModFit LT 3.0 software. 
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Fig. 16. Panel C. Cell cycle analysis of SK-Mel28 cell line after exposure to 
UVB damage (10mJ/cm2). Data were analyzed with ModFit LT 3.0 software. 
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3.3 Transduction of BRCA1 shRNA (BRCA13’UTR siRNA) into 

SK-MEL93 cells results in modulation of UV-B-induced cell 

cycle arrest 

  

 To determine whether BRCA1 is involved in signalling 

UV-B-mediated effects, we used siRNA technology to inhibit its 

expression. We generated stable knocked down BRCA1 into SK-

MEL93 cells, using shRNA lentiviral specific for BRCA1 

(BRCA13’UTR shRNA) (see Material and Methods). As shown in 

Fig. 17, BRCA1 protein expression was not detectable in SK-

Mel93/shBRCA1 cells when compared with cells infected with 

the empty lentiviral vector (SK-Mel93/shplKO.1).  

 

 

 Fig. 17. Western blotting analysis of BRCA1 protein level after 
infection of SK-Mel93 cells with pLK0.1/shRNA (SK-Mel93/shRNA), or 
pLK0.1/shBRCA1 (SK-Mel93/shBRCA1). γ-tubulin was used as control for 
loading. 

 

 

 Then, SK-Mel93/shBRCA1 cells were treated with UV-B-

irradiation at different time (0,30-24h), and performed Western  
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Blotting analysis using antibodies against MSH2 and p53 

proteins. We found no significantly changes in the expression 

levels of MSH2 and p53 proteins (Fig.18).  

 

 

 Fig 18. Western Blot analysis of hMSH2 and p53 protein levels in SK-
Mel93/shBRCA1 cells after  treatment with UVB 10mJ/cm2, for the indicated 
time periods. γ-tubulin was used as control for loading. 

 

 On the contrary, the levels of MSH2 and p53 proteins in 

SK-Mel93/shplKO.1 cells were to an extent comparable to that 

of parental cells (SK-Mel93) (Fig.19). 

 

 

 

 Fig 19. Western Blot analysis of hMSH2 and p53 protein levels in SK-
Mel93/shplKO.1 cells after  treatment with UVB 10mJ/cm2, for the indicated 
time periods. γ-tubulin was used as control for loading. 
 

 To enforce the idea that BRCA1 protein may be 

intimately linked to pathway caused by UV-B and evaluate the 

effect of UV-B on the cell cycle of SK-Mel93/shBRCA1 cell line,  
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DNA content was serially observed after UV-B-irradiation 

(10mJ/cm2) by flow cytometry. As show in Fig. 20 Panel A, SK-

Mel93/shBRCA1 cells seemed an increase (about 15%) of cells in 

Sub-G1 phase already 12h after UVB irradiation compared with 

cells infected with the empty lentiviral vector (SK-

Mel93/shplKO.1) (Fig. 20 Panel B). 

 

 

 

 Fig. 20. Panel A. Cell cycle analysis of SK-Mel93/shBRCA1 cell line 

after exposure to UVB damage (10mJ/cm2). Data were analyzed with ModFit 

LT 3.0 software. 
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 Fig. 20. Panel B. Cell cycle analysis of SK-Mel93/shplK0.1 cell line 

after exposure to UVB damage (10mJ/cm2). Data were analyzed with ModFit 

LT 3.0 software. 
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4. Discussion 

 

 Melanoma is a malignant tumor type characterized by a 

poor prognosis partly due to ineffective radiotherapy and 

chemotherapy (160,161, CCR2005 myc), although radiotherapy 

is widely applied for treatment of melanoma patients. Recently, 

it has been reported that several molecular factors, such as those 

involved in DNA repair or in the cell cycle, modulate in 

melanoma cells UV-B induced DNA repair, cell progression and 

apoptosis. In particular, it was suggested that the mismatch 

repair system is an initial step of the damage signalling and 

repair cascade. Additional, increasing evidence indicate an 

important function of hMSH2 for other pathways that are of 

importance for UV-induced melanomagenesis, including cell 

cycle regulation and modulating the apoptotic response of cells 

following UV-exposure (162). Moreover, the hMSH2 gene has 

been identified as a possible novel p53 regulated target gene, 

indicating a direct involvement of p53 in repair mechanisms via 

DNA binding of a mismatch repair gene. In this context, BRCA1 

tumor suppressor gene, known to play a central role in 

controlling cell progression and apoptosis, seems to be one 

possible candidate (163). 

 In our work, we have evaluated the effect of BRCA1 and 

of other its molecular partners (MSH2, MLH1and p53) after UV-

B-irradiation in a panel of human malignant melanoma cells. 
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 We exposed Colo38, SK-MEL93 and SK-MEL28 cells to 

10mJ/cm2 UV-B-irradiation and examined the expression of 

BRCA1, hMSH2, hMLH1 and p53 proteins by Western Blot 

analysis at different time (0,30-24h). The expression of hMLH1 

protein in the three cell lines shows no alteration. Similar 

results, with equal amounts of BRCA1, hMSH2 and p53 

proteins, were observed with the cell lines Colo 38 and SK-

MEL28. Conversely, the expression of BRCA1, hMSH2 and p53 

proteins, in the SK-MEL93 was found increased at 3h after UV-

B-irradiation. 

 To evaluate the effect of UV-B on the cell cycle of each 

cell lines (Colo38, SK-MEL93 and SK-MEL28), DNA content was 

serially observed after UV-B-irradiation (10mJ/cm2) by flow 

cytometry. Colo38 cells seemed to be synchronized at the G1/S 

boundary phase until 12h after 10mJ/cm2 UV-B-irradiation. 

From 12 to 24h a decrease in the fraction of S cells and a 

reciprocal increase of cells in Sub-G1 phase was observed. 

Similar comportment was observed in the SK-MEL28 cell line 

although did not seemed to be synchronized and the increase of 

cells in Sub-G1 phase was observed already to 9h after UVB 

irradiation. While, the SK-MEL93 cell line did not seemed to be 

synchronized but a rapid increase (about 35%) of cells in Sub-G1 

phase was observed already 6h after UVB irradiation. On the 

other hand, the three human melanoma cell lines shown a  
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different p53 status: Colo38 and SK-MEL28 are mutant p53 cell 

lines, while SK-MEL93 is wild type p53 cell line (162).  

 Based on our results, we speculate that BRCA1 over-

expression and the increase of cells in Sub-G1 phase, after UVB 

irradiation may be intimately linked to specific human 

melanoma cell line (SK-MEL93). In concordance with this 

hypothesis, we generated stable knocked down BRCA1 into SK-

MEL93 cells, using shRNA lentiviral specific for BRCA1 

(BRCA13’UTR shRNA) (see Material and Methods). BRCA1 

protein expression was not detectable in SK-Mel93/shBRCA1 

cells when compared with cells infected with the empty 

lentiviral vector (SK-Mel93/shplKO.1). Then, SK-

Mel93/shBRCA1 cells were treated with UV-B-irradiation at 

different time (0,30-24h), and performed Western Blotting 

analysis using antibodies against hMSH2 and p53 proteins. We 

found no significantly changes in the expression levels of 

hMSH2 and p53 proteins. Moreover, we evaluated the effect of 

UV-B on the cell cycle of SK-Mel93/shBRCA1 cell line and found 

that SK-Mel93/shBRCA1 cells seemed an increase (about 15%) of 

cells in Sub-G1 phase already 12h after UVB irradiation 

compared with cells infected with the empty lentiviral vector 

(SK-Mel93/shplKO.1). In conclusion, our findings support the 

hypothesis that BRCA1 expression modulates UV-B-induced 

effects on cell cycle progression. 

 Taken together, our data lend support to the general 

hypothesis of an important role played by BRCA1 providing  
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new insights into the molecular mechanisms underlying UV-

induced melanomagenesis, with a special focus on the cascade 

of events triggered in a specific human melanoma cell line (SK-

MEL93).  
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